Markscheme

November 2018

Physics

Higher level

Paper 3

This markscheme is the property of the International
Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

Question		Answers	Notes	Total
1.	a	$m^{\frac{3}{2}} \checkmark$	Accept other power of tens multiples of $m^{\frac{3}{2}}$, eg: $\mathrm{cm}^{\frac{3}{2}}$.	1
1.	b	measured uncertainties «for one oscillation and for 20 oscillations» are the same/similar/OWTTE OR $\%$ uncertainty is less for 20 oscillations than for one \checkmark dividing «by 20» / finding mean reduces the random error \checkmark		2

(continued...)
(Question 1 continued)

Question			Answers	Notes	Total
1.	c	i	Straight line touching at least 3 points drawn across the range \checkmark	It is not required to extend the line to pass through the origin.	1
1.	c	ii	theory predicts proportional relation $« T \propto \frac{1}{d}$, slope $=T d=\frac{c}{\sqrt{g}}=$ constant » \checkmark the graph is «straight» line through the origin \checkmark		2

(continued...)
(Question 1 continued)

Question		Answers	Total		
2.	a		to provide a constant heating rate / power OR to have m proportional to $t \checkmark$		
2.	b		due to heat losses «VIt is larger than heat into liquid»L_{v} calculated will be larger \checkmark 2. c	heat losses will be similar / the same for both experiments OR heat loss presents systematic error \checkmark taking the difference cancels/eliminates the effect of these losses OR use a graph to eliminate the effect \checkmark	$\mathbf{2}$

Section B

Option A - Relativity

Question			Answers	Notes	Total
3.	a		a set of rulers and clocks / set of coordinates to record the position and time of events \checkmark		1
3.	b	i	ALTERNATIVE 1: the time in frame S^{\prime} is $t^{\prime}=\frac{L}{C} \checkmark$ but time is absolute in Galilean relativity so is the same in $S \checkmark$ ALTERNATIVE 2: In frame S, light rays travel at $c+v \checkmark$ so $t=\frac{L}{(c+v)-v}=\frac{L}{c} \checkmark$	In Alternative 1, they must refer to S^{\prime}	2
3.	b	ii	$x=x^{\prime}+v t \text { and } x^{\prime}=L \checkmark$ «substitution to get answer»		1

Question			Answers	Notes	Total
4.	a		$\begin{aligned} & \frac{0.82 c+0.40 c}{1+\frac{0.82 c \times 0.40 c}{c^{2}}} \\ & 0.92 c \checkmark \end{aligned}$		2
4.	b	i	$\begin{aligned} & \Delta t^{\prime}=\frac{120}{0.40 c} \checkmark \\ & \Delta t^{\prime}=1.0 \times 10^{-6} « \mathrm{~s} » \end{aligned}$		2
4.	b	ii	$\begin{aligned} & \gamma=« \frac{1}{\sqrt{1-0.82^{2}}}=» 1.747 \checkmark \\ & \Delta t=« \gamma\left(\Delta t^{\prime}+\frac{v \Delta x^{\prime}}{c^{2}}\right) »=1.747 \times\left(1.0 \times 10^{-6}+\frac{0.82 c \times 120}{c^{2}}\right) \end{aligned}$ OR $\begin{aligned} & \Delta t=\frac{120}{1.747 \times(0.92-0.82) c} \\ & 2.3 \times 10^{-6} « \mathrm{~s} » \end{aligned}$		3

Question			Answers	Notes	Total
5.	a	i	$\begin{aligned} & \gamma=« \frac{1}{\sqrt{1-0.745^{2}}}=» 1.499 \checkmark \\ & x^{\prime}=« \gamma(x-v t)=» 1.499 \times(1.0-0) \checkmark \\ & « x^{\prime}=1.5 \mathrm{~m} » \end{aligned}$		2
5.	a	ii	$\begin{aligned} & t^{\prime}=« \gamma\left(t-\frac{v x}{c^{2}}\right)=» 1.499 \times\left(0-\frac{0.745 c \times 1}{c^{2}}\right) «=-\frac{1.11}{c} » \\ & « c t^{\prime}=-1.1 \mathrm{~m} » \end{aligned}$ OR using spacetime interval $0-1^{2}=\left(c t^{\prime}\right)^{2}-1.5^{2} \Rightarrow « c t^{\prime}=-1.11 » \checkmark$		1

(continued...)
(Question 5 continued)

Question			Answers	Notes	Total
5.	b	i	line through event E parallel to $c t^{\prime}$ axis meeting x^{\prime} axis and labelled P J		1
5.	b	ii	point on x^{\prime} axis about $\frac{2}{3}$ of the way to P labelled $Q \checkmark$		1

(continued...)
(Question 5 continued)

Question			Answers	Notes	Total
6.	a		$p c=\sqrt{E^{2}-\left(m c^{2}\right)^{2}}=\sqrt{1.50^{2}-0.511^{2}}$ « $=1.410 \mathrm{MeV}$ »		1
6.	b	i	first equation is due to momentum conservation \checkmark second equation is due to total energy conservation		2
6.	b	ii	adding $2 p_{1}=3.42 \mathrm{MeV} \mathrm{c}^{-1} \Rightarrow p_{1}=1.71 \mathrm{MeV} \mathrm{c}^{-1} \checkmark$ $p_{2}=0.30 \mathrm{MeV} \mathrm{c}^{-1} \checkmark$		2

Question			Answers	Notes	Total
7.	a	i	the distance from the black hole at which the escape speed is the speed of light \checkmark		1
7.	a	ii	$R_{\mathrm{S}}=« \frac{2 G M}{c^{2}}=\frac{2 \times 6.67 \times 10^{-11} \times 4.0 \times 10^{36}}{9.0 \times 10^{16}}=» 5.9 \times 10^{9} « \mathrm{~m} » \downarrow$		1
7.	b		$2=\frac{1}{\sqrt{1-\frac{5.9 \times 10^{9}}{r}}}$ rearranged to give r OR $\begin{aligned} & r=1.33 \times 5.9 \times 10^{9} \text { «m» } \\ & r=7.9 \times 10^{9} « \mathrm{~m} » \end{aligned}$		3

Option B — Engineering physics

Question			Answers	Notes	Total
8.	a		taking torques about the pivot $R \times 4.00=36.0 \times 2.5 \checkmark$ $R=22.5 \text { «N» }$		2
8.	b	i	$\begin{aligned} & 36.0 \times 2.50=30.6 \times \alpha \checkmark \\ & \alpha=2.94 \text { «rad s}^{-2} » \end{aligned}$		2
8.	b	ii	the equation can be applied only when the angular acceleration is constant any reasonable argument that explains torque is not constant, giving non constant acceleration \checkmark	eg weight is no longer perpendicular to the rod	2
8.	c	i	«from conservation of energy» Change in GPE = Change in rotational KE \checkmark $\begin{aligned} & W \frac{L}{2}=\frac{1}{2} I \omega^{2} \\ & \omega=\sqrt{\frac{36.0 \times 5.00}{30.6}} \\ & « \omega=2.4254 \mathrm{rad} \mathrm{~s}^{-1} » \end{aligned}$		3
8.	c	ii	$L=30.6 \times 2.43=74.4$ «Js» \downarrow		1

Question			Answers	Notes	Total
9.	a	i	ALTERNATIVE 1: $\begin{aligned} & P_{c}=P_{B}=\frac{P_{A} V_{A}}{V_{B}} \checkmark \\ & =\frac{2.8 \times 10^{6} \times 1 \times 10^{-4}}{2.8 \times 10^{-4}} «=1.00 \times 10^{6} \mathrm{~Pa} » \end{aligned}$ ALTERNATIVE 2 $\begin{aligned} & 2.80 \times 10^{6} \times 1.00^{\frac{5}{3}}=P_{\mathrm{c}} \times 1.85^{\frac{5}{3}} \\ & P_{\mathrm{c}}=2.80 \times 10^{6} \times \frac{1.00^{\frac{5}{3}}}{1.85^{\frac{5}{3}}} «=1.00 \times 10^{6} \mathrm{~Pa} \text { » } \end{aligned}$		2
9.	a	ii	ALTERNATIVE 1: Since $T_{B}=T_{A}$ then $T_{C}=\frac{V_{C} T_{B}}{V_{B}} \checkmark$ $=\frac{1.85 \times 385}{2.8} \text { «=254.4K» }$ ALTERNATIVE 2: $\begin{aligned} & \frac{2.80 \times 1.00}{385}=\frac{1.00 \times 1.85}{T_{c}} « \mathrm{~K} » \checkmark \\ & T_{\mathrm{c}}=385 \times \frac{1.00 \times 1.85}{2.80} \text { « }=254.4 \mathrm{~K} » \checkmark \end{aligned}$		2

(continued...)
(Question 9 continued)

Question			Answers	Notes	Total
9.	b		$\begin{aligned} & \text { work done }=« p \Delta V=1.00 \times 10^{6} \times\left(1.85 \times 10^{-4}-2.80 \times 10^{-4}\right)=»-95 « \mathrm{~J} » \\ & \text { change in internal energy }=« \frac{3}{2} p \Delta V=-\frac{3}{2} \times 95=»-142.5 « \mathrm{~J} » \end{aligned}$ $\begin{aligned} & Q=-95-142.5 \checkmark \\ & \text { «-238 J» } \end{aligned}$	Allow positive values.	3
9.	c	i	net work is $288-238=50$ « $\mathrm{J} » ~ \checkmark$ efficiency $=« \frac{288-238}{288}=» 0.17$ Ј		2
9.	c	ii	along $B \rightarrow C \checkmark$		1

Question			Answers	Notes	Total
10.	a		ice displaces its own weight of water / OWTTE $O R$ melted ice volume equals original volume displaced / OWTTE \checkmark no change will take place \checkmark		2
10.	b	i	continuity equation says $v \times A_{1}=u \times A_{2} \checkmark$ «and» $A_{1}=4 A_{2} \checkmark$ «giving result»		2
10.	b	ii	Bernoulli: $\begin{aligned} & « \frac{1}{2} \rho v^{2}+\rho g H+P_{\mathrm{atm}}=\frac{1}{2} \rho u^{2}+0+P_{\mathrm{atm}} » \text { gives } \frac{1}{2} \times 1000 \times \frac{u^{2}}{16}+1000 \times 9.8 \times 5.0=\frac{1}{2} \times 1000 \times u^{2} \\ & u=10.2 « \mathrm{~m} \mathrm{~s}^{-1} » \checkmark \end{aligned}$	Accept solving directly via conservation of energy.	2

Question		Answers	Notes	Total
11.	a	because the mass and the driver are out of phase «by $\pi » \downarrow$ so upwards \checkmark	Justification needed for MP2	2
11.	b	ALTERNATIVE 1: $\begin{aligned} & « Q=2 \pi \frac{A_{0}^{2}}{A_{0}^{2}-A_{1}^{2}} » \Rightarrow \frac{A_{1}^{2}}{A_{0}^{2}}=1-\frac{2 \pi}{Q} \\ & \frac{A_{1}}{A_{0}}=« \sqrt{1-\frac{2 \pi}{22}}=» A_{1}=8.5 « \mathrm{~cm} » \end{aligned}$ ALTERNATIVE 2: driver amplitude is constant \checkmark so mass amplitude is unchanged at $10 \mathrm{~cm} \checkmark$		2

Option C - Imaging

Question			Answers	Notes	Total
12.	a		each incident ray shown splitting into two \checkmark each pair symmetrically intersecting each other on principal axis \downarrow for red, intersection further to the right \checkmark	 For MP3, at least one of the rays must be labelled.	3
12.	b	i	rays diverge after passing through lens OR the extension of the rays will intersect the principal axis on the side of incident rays/as if they were coming from the focal point/points in the left side/OWTTE \checkmark		1
12.	b	ii	by placing a diverging lens next to the converging lens OR make an achromatic doublet \checkmark	Further details are not required.	1

Question			Answers	Notes	Total
13.	a		proper construction lines \downarrow image at intersection of proper construction lines \checkmark		2

(Question 13 continued)

Question			Answers	Notes	Total
14.	a	i	$\begin{aligned} & « \sin \theta_{\mathrm{c}}=\frac{n_{1}}{n_{2}} » n_{1}=1.52 \times \sin 84.0^{\circ} \checkmark \\ & n_{1}=1.51 \checkmark \end{aligned}$		2
14.	a	ii	to have a critical angle close to $90^{\circ} \checkmark$ so only rays parallel to the axis are transmitted \checkmark to reduce waveguide/modal dispersion \checkmark	Do not accept "so that most rays are reflected".	1 max
14.	b	i	long path is $\frac{12 \times 10^{3}}{\sin 84^{\circ}} \checkmark$ $=12066 \text { « m» }$ «so 66 m longer»		2
14.	b	ii	speed of light in core is $\frac{3.0 \times 10^{8}}{1.52}=1.97 \times 10^{8} « \mathrm{~m} \mathrm{~s}^{-1} » \checkmark$ time delay is $\frac{66}{1.97 \times 10^{8}}=3.35 \times 10^{-7}$ «s»		2
14.	b	iii	no, period of signal is 1×10^{-8} «s » which is smaller than the time delay/OWTTE \checkmark		1

Question		Answers	Notes	Total
15.	a	protons spin direction changes OR proton energy state changes \checkmark		
15.	b	Relaxation time «of signal/proton spin» \checkmark Location/time delay of the emitted RF signal \checkmark		
15.	c		Relaxation time gives information on tissue type/density/health/OWTTE \checkmark Location information provides 3D image/OWTTE \checkmark	

Question		Answers	Notes	Total	
16.	a	$I_{0} e^{-23 \times 0.041} \checkmark$ $=0.39 I_{0} \checkmark$	$\mathbf{2}$		
16.	b		$R=«\left(\frac{6.3 \times 10^{6}-1.7 \times 10^{6}}{6.3 \times 10^{6}+1.7 \times 10^{6}}\right)^{2}=» 0.33 \checkmark$ so reflected intensity is $0.33 \times 0.39 I_{0}=0.13 I_{0} \checkmark$		
16.	c	$0.13 I_{0} \times 0.39=0.05 I_{0} \checkmark$	$\mathbf{2}$		

Option D - Astrophysics

Question			Answers	Notes	Total
17.	a		In cluster, stars are gravitationally bound $O R$ constellation not \checkmark In cluster, stars are the same/similar age $O R$ in constellation not \checkmark Stars in cluster are close in space/the same distance OR in constellation not \checkmark Cluster stars appear closer in night sky than constellation \checkmark Clusters originate from same gas cloud OR constellation does not \checkmark		2 max
17.	b	i	$d=275$ «рс» \checkmark		1
17.	b	ii	because of the difficulty of measuring very small angles \checkmark		1
17.	C		mass of gas cloud > Jeans mass \checkmark «magnitude of» gravitational potential energy $>E_{k}$ of particles \checkmark cloud collapses/coalesces «to form a protostar» \downarrow		2 max

Question			Answers	Notes	Total
18.	a	i	$\lambda=« \frac{2.9 \times 10^{-3}}{4600}=» 630 « n m » \downarrow$		1
18.	a	ii	black body curve shape \downarrow peaked at a value from range 600 to $660 \mathrm{~nm} \sqrt{ }$		2
18.	a	iii	$\begin{aligned} & \frac{L}{L_{\odot}}=\left(\frac{0.73 R_{\odot}}{R_{\odot}}\right)^{2} \times\left(\frac{4600}{5800}\right)^{4} \checkmark \\ & L=0.211 L_{\odot} \checkmark \end{aligned}$		2
18.	b		$M=« 0.21^{\frac{1}{3.5}} M_{\odot}=» 0.640 M_{\odot} \checkmark$	Accept reverse argument $0.644^{3.5}=0.21$	1
18.	C		$\frac{T_{E}}{T_{\odot}}=« \frac{\frac{M_{E}}{L_{E}}}{\frac{M_{\odot}}{L_{\odot}}}=\frac{0.64}{0.21}=» 3.0 \checkmark$ $T \approx 27$ billion years \checkmark		2
18.	d		red giant \checkmark planetary nebula \checkmark white dwarf $\sqrt{ }$	do NOT accept supernova, red supergiant, neutron star or black hole as stages	3

Question		Answers	Notes	Total
19.	a	measured redshift «z» of star \checkmark use of Doppler formula $O R z \sim v / c$ $O R v=\frac{c \Delta \lambda}{\lambda}$ to find $v \checkmark$	OWTTE	2
19.	b	use of gradient or any point on the line to obtain any expression for either $H=\frac{v}{d}$ or $t=\frac{d}{v} \checkmark$ correct conversion of d to m and v to $\mathrm{m} / \mathrm{s} \checkmark$ $=4.6 \times 10^{17} \text { «s » }$		3

Question		Answers	Notes	Total
20.	a	energy filling all space \checkmark resulting in a repulsive force/force opposing gravity \checkmark accounts for the accelerating universe \checkmark makes up about 70% of «the energy» of universe $\sqrt{ }$		2 max
20.	b	black hole \checkmark brown dwarf \downarrow massive compact halo object /MACHO $\sqrt{ }$ neutrinos \checkmark weakly interacting massive particle /WIMP \checkmark		2 max

| Question | | Answers | Notes | Total |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 21. | a | «wavelength of light/CBR» $\lambda \propto R \checkmark$
 reference to Wien's law showing that $\lambda \propto \frac{1}{T} \checkmark$
 combine to get result \checkmark | OWTTE | |
| 21. | b | $\frac{R_{\text {past }}}{R_{\text {now }}}=\frac{3}{300}=0.01 \checkmark$ 3 | | |

